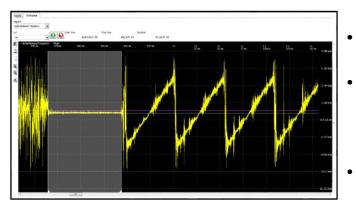
HOW WE KEEP PACE WITH MODERN/FUTURE RADAR

Andrew Owen - Technical Sales Manager ELINT/RESM

ROHDE&SCHWARZ

Make ideas real

THE MODERN RADAR ENVIRONMENT


ROHDE&SCHWARZ

Make ideas real

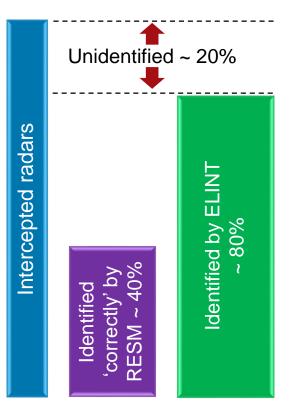
RADAR DEVELOPMENTS

• Rule of thumb....EW technology lags advances in radar design by something like 10 years...EW seems now even further behind the radar development curve.

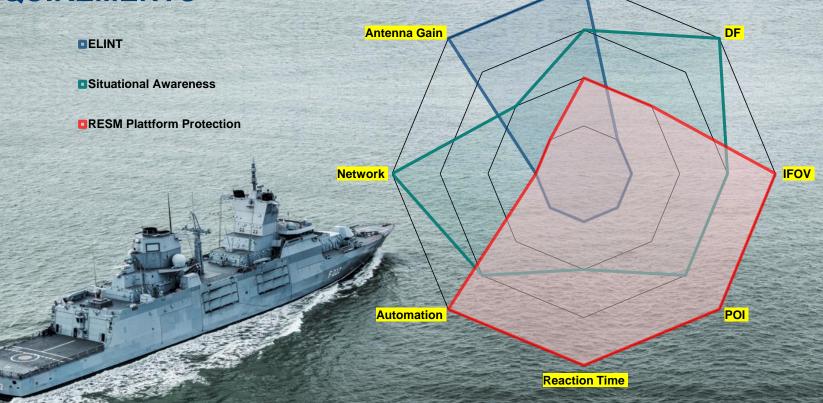
- Radars are rarely single frequency single mode devices any more.
- Multi-mode, multi-function, complex pulse modulation, frequency agility, software defined (therefore reprogrammable) Easy to detect but incredibly difficult to fully characterise.
- LPI radars just plain difficult to even detect
- Sight lost of the threat from legacy systems which utilise decades old engineering that in fact are able to detect platforms using the most modern of technologies

CHALLENGES

Radar Technology


- Rapid advancement and increased capabilities
- New generation of multi-function systems (phased/active array systems, LPI etc.)
- Affordable and sold worldwide

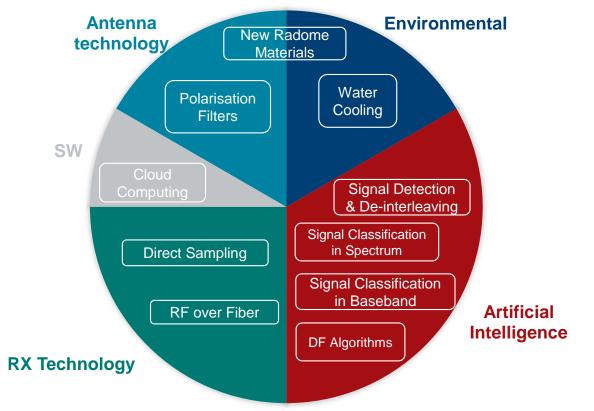
Relevance for ELINT/RESM


- Eroding range advantage
- Hard to detect, identify and analyze (frequency & waveform agile)
- Systems at the limit

RADAR CLASSIFICATION

REQUIREMENTS

RX Sensitivity


TECHNOLOGY TRENDS

ROHDE&SCHWARZ


Make ideas real

TECHNOLOGY TRENDS

DIRECT SAMPLING

Customer Requirement

- 100% POI for the frequency range up to 40 GHz in combination with good analog characteristics (e.g. dynamic range)
- Analyze signals with bandwidths / RF agility up to 12 GHz

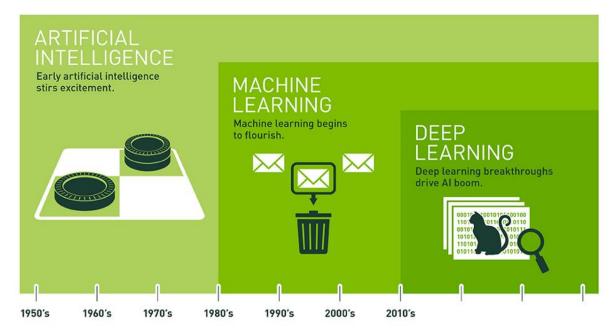
Potential Solution

 Direct sampling receiver based on advanced ADC (ASIC) technology

Technical Feasibility

- ASIC technology is available
- Current ADC speeds now fast enough to achieve higher radar frequencies
- Overall performance can now match that of dedicated RF HW

DIRECTION FINDING


► CURRENT SOLUTION

- Direction finders are using Watson-Watt (WWT) method and/or correlative interferometer (CI) method

► DISADVANTAGES

- Performance limitations regarding direction finding in multi-wave scenarios (ambiguities)
- Performance limitations in regions with low aperture and high aperture (ambiguities)
- Antennas must be modelled and be exact to achieve good performance

ARTIFICIAL INTELLIGENCE

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

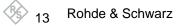
DIRECTION FINDING

Customer Requirement

- Increased early-warning time through improved range and accuracy of direction finding
- Lower manufacturing cost

Potential Solution

- Al supported DF algorithms
- Less computational efforts and more flexibility for supporting complex antenna structures


AI DF ALGORITHMS

► FUTURE SOLUTION

- AI (DL/ML) aided direction finding methods

► ADVANTAGES OVER CURRENT SOLUTION

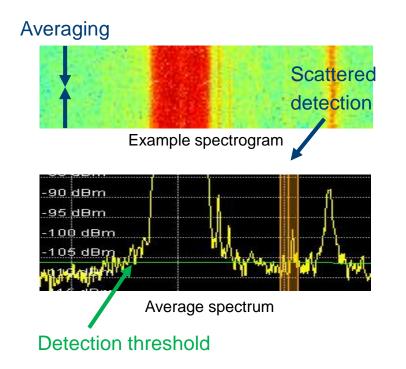
- Computational power / complexity can be reduced
- Time for DF Antenna measurement (model function) can be significantly reduced
- DF performance regarding reflection immunity and DF angle error can be reduced

AI BASED SIGNAL DETECTION & DEINTERLEAVING

Customer Requirement

- Robust signal detection for high POI and reliability (lower false alarm rate, higher detection rate)
- Challenges:
 - Colliding signals
 - Interferences
 - Fluctuating amplitude

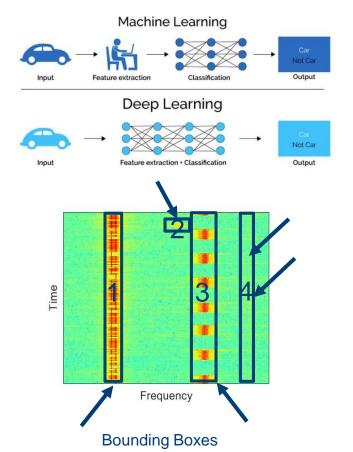
Potential Solution


 AI methods for detection and deinterleaving based on spectrum data

Technical Feasibility

- Quality depends on a-prior knowledge (labeled test sets)
- High effort for data gathering, maintenance and labeling

MOTIVATION


- Modern Detection
 - Based on energy
 - Average spectrum
 - Estimate noise/detection threshold
 - Frequencies above threshold: signal candidate bins
 - Combiner logic for candidate bins
- Limitations
 - Error prone combiner logic
 - No collision detection/resolution
 - Fluctuating energy levels (SSB): Non-satisfying detection
 - Weak signal detection fails if a very strong signal exists in the vicinity

DEEP LEARNING FOR DETECTION

- Deep learning: Feature extraction and classification using deep neural nets (DNNs)
- State of the art technology especially in object detection and image classification problems

- Starting point: spectrogram data (waterfall)
 - Realize the existence of signals
 - Identify the exact quantity
 - Localize each signal in time and frequency

SIGNAL CLASSIFICATION IN SPECTRUM

Customer Requirement

 Increase early-warning time through faster classification

Possible Solution

 Al methods for classification based on spectrum data

Technical Feasibility

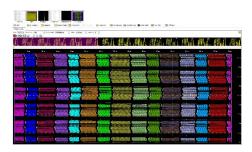
- Quality depends on a-prior knowledge (test sets)
- High labeling effort
- Current publications cover only small parts of entire challenge
- Scan solution (low resolution; only spectral data available)

WHAT IS THE DIFFERENCE?

► For our Machine Learning we need:

An Aircraft

- An Algorithm
- ► Training



A Ship

WHAT IS THE DIFFERENCE?

H-	ALSE /	-0! <i>i</i>	al.	ulli.	al di	LL M	i.i. i	0.5	are. (周期	199.1	- dili d	dif.	n a	
. HORE	A BEAR	_225 (IA).		1. 1903	IN NEW				ALC: NO		MINATE				
	Contractor	CONSTRUCT	-	in the second					aina	-	autotan	5	-		
	Control Control	Amiliar		Calendary .				1-10			0.0.0				
		-	6-18-1 9	- WWWW	1			115000	10.32	switting se	- Manusu	10000		11 550	
<u>.</u>		Y							1					1	
	CO.Summer			1000					erre.	Annustra	in State	*****			
-				Meterial		77			1	Si di desi			4		
		il vientera	-	WWWW	B YHTH		Witter 24		ditte.	sitementes!	n cerieren			1	
(11) :				dina,	- 1 111	n official		14.60						8	
1000010	e 100 k 00000	- entrany		c				Concession of		unsered of					
	Contrapport for	· Samo	-	an a			0000 000		entre i			10000		- 67	

Radar A

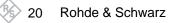
Radar B

► For our Machine Learning we need:

- An Algorithm
 Training
 ?
- ► Samples (huge amounts of data) X

SIGNAL CLASSIFICATION IN BASEBAND

Customer Requirement


- Improved classification
 performance and reliability
- Automatic determination of modulation type

Features

 Determination of modulation type based on IQ data

Technical Feasibility

- Quality depends on prior knowledge (test sets)
- High labeling effort
- Computational efforts exceed system capabilities

WHY APPLY AI TO THE ELECTROMAGNETIC SPECTRUM

- ▶ We need to defeat the enemy in the electronic warfare domain
- ► Traditional EW 'superpowers' have fallen behind potential adversaries.
- ► Offensive cognitive electronic warfare technologies are the future
- ► Historically enemy systems have to be developed before any countermeasures
- Autonomously counter adversary systems without preprogramming

WHY NOT AI

► The military insists on having a person to blame if a mistake is made.

Make ideas real

